22 research outputs found

    Improving Accuracy of Unmanned Aerial System Thermal Infrared Remote Sensing for Use in Energy Balance Models in Agriculture Applications

    Get PDF
    Unmanned aerial system (UAS) remote sensing has rapidly expanded in recent years, leading to the development of several multispectral and thermal infrared sensors suitable for UAS integration. Remotely sensed thermal infrared imagery has been used to detect crop water stress and manage irrigation by leveraging the increased thermal signatures of water stressed plants. Thermal infrared cameras suitable for UAS remote sensing are often uncooled microbolometers. This type of thermal camera is subject to inaccuracies not typically present in cooled thermal cameras. In addition, atmospheric interference also may present inaccuracies in measuring surface temperature. In this study, a UAS with integrated FLIR Duo Pro R (FDPR) thermal camera was used to collect thermal imagery over a maize and soybean field that contained twelve infrared thermometers (IRT) that measured surface temperature. Surface temperature measurements from the UAS FDPR thermal imagery and field IRTs corrected for emissivity and atmospheric interference were compared to determine accuracy of the FDPR thermal imagery. The comparison of the atmospheric interference corrected UAS FDPR and IRT surface temperature measurements yielded a RMSE of 2.24 degree Celsius and a R2 of 0.85. Additional approaches for correcting UAS FDPR thermal imagery explored linear, second order polynomial and artificial neural network models. These models simplified the process of correcting UAS FDPR thermal imagery. All three models performed well, with the linear model yielding a RMSE of 1.27 degree Celsius and a R2 of 0.93. Laboratory experiments also were completed to test the measurement stability of the FDPR thermal camera over time. These experiments found that the thermal camera required a warm-up period to achieve stability in thermal measurements, with increased warm-up duration likely improving accuracy of thermal measurements

    Water productivity in meat and milk production in the US from 1960 to 2016

    Get PDF
    Global demand for livestock products is rising, resulting in a growing demand for feed and potentially burdening freshwater resources to produce this feed. To offset this increased pressure on water resources, the environmental performance of livestock sector should continue to improve. Over the last few decades, product output per animal and feedstuff yields in the US have improved, but before now it was unclear to what extent these improvements influenced the water productivity (WP) of the livestock products. In this research, we estimate changes in WP of animal products from 1960 to 2016. We consider feed conversion ratios (dry matter intake per head divided by product output per head), feed composition per animal category, and estimated the water footprint of livestock production following the Water Footprint Network\u27s Water Footprint Assessment methodology. The current WP of all livestock products appears to be much better than in 1960. The observed improvements in WPs are due to a number of factors, including increases in livestock productivity, feed conversion ratios and feed crop yields, the latter one reducing the water footprint of feed inputs. Monogastric animals (poultry and swine) have a high feed-use efficiency compared to ruminants (cattle), but ruminants consume relatively large portion of feed that is non-edible for humans. Per unit of energy content, milk has the largest WP followed by chicken and pork. Per gram of protein, poultry products (chicken meat, egg and turkey meat) have the largest WP, followed by cattle milk and pork. Beef has the smallest WP. These data provide important information that may aid the development of strategies to improve WP of the livestock sector

    AquaCrop-OS: An open source version of FAO's crop water productivity model

    Get PDF
    AbstractCrop simulation models are valuable tools for quantifying crop yield response to water, and for devising strategies to improve agricultural water management. However, applicability of the majority of crop models is limited greatly by a failure to provide open-access to model source code. In this study, we present an open-source version of the FAO AquaCrop model, which simulates efficiently water-limited crop production across diverse environmental and agronomic conditions. Our model, called AquaCrop-OpenSource (AquaCrop-OS), can be run in multiple programming languages and operating systems. Support for parallel execution reduces significantly simulation times when applying the model in large geospatial frameworks, for long-run policy analysis, or for uncertainty assessment. Furthermore, AquaCrop-OS is compliant with the Open Modelling Interface standard facilitating linkage to other disciplinary models, for example to guide integrated water resources planning

    Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Get PDF
    The main goal of this research was to estimate the actual evapotranspiration (ETc) of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile) using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO) dual crop coefficient approach, in which the basal crop coefficient (Kcb) was derived from the soil adjusted vegetation index (SAVI) calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82 SAVI 0.07 (R2 = 0.95). The methodology was applied during two growing seasons (2010–2011 and 2012–2013), and ETc was evaluated using latent heat fluxes (LE) from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE) between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm day1, which mean a relative error of 25%. The index of agreement (d) values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards

    Evaluation of the Weak Constraint Data Assimilation Approach for Estimating Turbulent Heat Fluxes at Six Sites

    Get PDF
    A number of studies have estimated turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into the strong constraint-variational data assimilation (SC-VDA) approaches. The SC-VDA approaches do not account for the structural model errors and uncertainties in the micrometeorological variables. In contrast to the SC-VDA approaches, the WC-VDA approach (the so-called weak constraint-VDA) accounts for the effects of structural and model errors by adding a model error term. In this study, the WC-VDA approach is tested at six study sites with different climatic and vegetative conditions. Its performance is also compared with that of SC-VDA at the six study sites. The results show that the WC-VDA produces 10.16% and 10.15% lower root mean square errors (RMSEs) for sensible and latent heat flux estimates compared with the SC-VDA approach. The model error term can capture errors in the turbulent heat flux estimates due to errors in LST and micrometeorological measurements, as well as structural model errors, and does not allow those errors to adversely affect the turbulent heat flux estimates. The findings also indicate that the estimated model error term varies reasonably well, so as to capture the misfit between predicted and observed net radiation in different hydrological and vegetative conditions. Finally, synthetically generated positive (negative) noises are added to the hydrological input variables (e.g., LST, air temperature, air humidity, incoming solar radiation, and wind speed) to examine whether the WC-VDA approach can capture those errors. It was found that the WC-VDA approach accounts for the errors in the input data and reduces their effect on the turbulent heat flux estimates

    Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes

    Get PDF
    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field ( 10 m) and plant canopy (1 m) scale evapotranspiration (ET) monitoring. In this study, highresolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EFDLE/(H CLE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in daily water use estimates for these 2 days for the vineyards. Model sensitivity analysis demonstrated the high degree of sensitivity of the TSEB model to the accuracy of the TR data, while the DATTUTDUT model was insensitive to systematic errors in TR as is the case with contextual-based models. However, it is shown that the study domain and spatial resolution will significantly influence the ET estimation from the DATTUTDUT model. Future work is planned for developing a hybrid approach that leverages the strengths of both modeling schemes and is simple enough to be used operationally with high-resolution imagery

    Water productivity in meat and milk production in the US from 1960 to 2016

    Get PDF
    Global demand for livestock products is rising, resulting in a growing demand for feed and potentially burdening freshwater resources to produce this feed. To offset this increased pressure on water resources, the environmental performance of livestock sector should continue to improve. Over the last few decades, product output per animal and feedstuff yields in the US have improved, but before now it was unclear to what extent these improvements influenced the water productivity (WP) of the livestock products. In this research, we estimate changes in WP of animal products from 1960 to 2016. We consider feed conversion ratios (dry matter intake per head divided by product output per head), feed composition per animal category, and estimated the water footprint of livestock production following the Water Footprint Network\u27s Water Footprint Assessment methodology. The current WP of all livestock products appears to be much better than in 1960. The observed improvements in WPs are due to a number of factors, including increases in livestock productivity, feed conversion ratios and feed crop yields, the latter one reducing the water footprint of feed inputs. Monogastric animals (poultry and swine) have a high feed-use efficiency compared to ruminants (cattle), but ruminants consume relatively large portion of feed that is non-edible for humans. Per unit of energy content, milk has the largest WP followed by chicken and pork. Per gram of protein, poultry products (chicken meat, egg and turkey meat) have the largest WP, followed by cattle milk and pork. Beef has the smallest WP. These data provide important information that may aid the development of strategies to improve WP of the livestock sector

    Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)

    No full text
    The purpose of this work is to contribute to the development of a combined approach to evaluate irrigated areas based on: (1) irrigation performance analysis intended to assess the productive impacts of irrigation practices and infrastructures, and (2) water accounting focused on the hydrological impacts of water use. Ador-Simulation, a combined model that simulates irrigation, water delivery, and crop growth and production was applied in a surface irrigated area (1213 ha) located in the Bear River Irrigation Project, Utah, U.S.A.. A soil survey, a campaign of on-farm irrigation evaluations and an analysis of the database from the Bear River Canal Company and other resources were performed in order to obtain the data required to simulate the water flows of the study area in 2008. Net land productivity (581 USA^ ha1)was20 ha-1) was 20% lower than the potential value, whereas on-farm irrigation efficiency (IE) averaged only 60%. According to the water accounting, water use amounted to 14.24 Mm3, 86% of which was consumed through evapotranspiration or otherwise non-recoverable. Gross water productivity over depleted water reached 0.132 US m-3. In addition, two strategies for increasing farm productivity were analyzed. These strategies intended to improve water management and infrastructures raised on-farm IE to 90% reducing the gap between current and potential productivities by about 50%. Water diverted to the project was reduced by 2.64 Mm3. An analysis based on IE could lead to think that this volume would be saved. However, the water accounting showed that actually only 0.91 Mm3 would be available for alternative uses. These results provide insights to support the decision-making processes of farmers, water user associations, river basin authorities and policy makers. Water accounting overcomes the limitations and hydrological misunderstandings of traditional analysis based on irrigation efficiency to assess irrigated areas in the context of water scarcity and competitive agricultural markets.Land productivity Surface irrigation Water accounting Water balance Water consumption Water depletion Water management Water productivity

    Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Get PDF
    The main goal of this research was to estimate the actual evapotranspiration (ETc) of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile) using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO) dual crop coefficient approach, in which the basal crop coefficient (Kcb) was derived from the soil adjusted vegetation index (SAVI) calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82 SAVI 0.07 (R2 = 0.95). The methodology was applied during two growing seasons (2010–2011 and 2012–2013), and ETc was evaluated using latent heat fluxes (LE) from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE) between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm day1, which mean a relative error of 25%. The index of agreement (d) values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards

    Observations and recommendations on the current state of agricultural irrigation in Brazil: Consultant final report IICA/EMBRAPA PROCENSUL II

    No full text
    80 páginasThe report contains findings and recommendations on the research and practice of irrigated agriculture in Brazil. The report presents five sections. Initially, it contains a description of visits to the several EMBRAPA research centers and to some of the irrigated regions and projects in the country. The discussion section contains some observations and comments on topics, important in policy and research areas for Brazil. A summary of the major comments and recommendations are presented in section 5
    corecore